Learn more about WIPO Re:Search members by viewing their detailed profiles.
WIPO Re:Search Resource Platform terms and conditions of use
Learn more about WIPO Re:Search members by viewing their detailed profiles.
WIPO Re:Search Resource Platform terms and conditions of use
Choose one option to export the data.
PPT
Members
The Institut Pasteur de Montevideo (IP Montevideo) is one of the most recent affiliates of the Institut...
The London School of Hygiene & Tropical Medicine (LSHTM) is a public research university that was founded in...
Established in 1962, the University of Cape Coast is an equal opportunity university uniquely placed to...
The Foundation for Neglected Disease Research (FNDR), incorporated on September 1st 2014, is a non-profit...
Located in Porto Alegre, capital city of the state of Rio Grande do Sul, the Federal University of Health...
Jomo Kenyatta University of Agriculture and Technology (JKUAT) is a public university situated northeast of...
Collaborations
Artemisinin combination therapy (ACT) is the standard of care in treating uncomplicated malaria, while newer synthetic endoperoxides like artefenomel are being actively studied in clinical trials. Adam Renslo, in the Department of Pharmaceutical Chemistry at the University of California, San Francisco (UCSF), is exploring artefenomel-like trioxolane analogs bearing a novel substitution pattern that may deliver improved physiochemical properties. To assist the Renslo Lab in driving this program toward clinical candidate selection, Medicines for Malaria Venture (MMV) is supporting the Renslo Lab in assessing the solubility, lipophilicity, and metabolic stability of frontrunner compounds using appropriate in vitro ADME assays. The resulting data will be a key factor in the selection of the best analogs for further in vivo evaluation. Given the extent of work and progress in the endoperoxide area, new compounds will only be of interest if their pharmacokinetics and potency support very low single dose potential with no alteration of parasite clearance between sensitive and resistant parasites. These early studies will help to assess the Renslo Lab compounds against this high bar.
Dr. Audrey Odom John (Washington University in St. Louis) and Dr. Cynthia Dowd (The George Washington University) identified an antimalarial drug candidate with a novel, parasite-specific target. The investigators have explored various solutions to improve the compound’s pharmacokinetic properties, including administration in a patch formulation. BVGH coordinated a call between Dr. Odom John, Dr. Dowd, and a Pfizer scientist with expertise in transdermal drug delivery to help assess the feasibility of this approach for the compound.
A Pfizer scientist with expertise in transdermal drug delivery shared advice on the feasibility of a transdermal delivery for the investigators’ antimalarial drug candidate and helped suggest next steps for development.
In an effort to develop novel drugs against Chagas disease, Dr. Artur Cordeiro at the Brazilian Biosciences National Laboratory (LNBio) has identified chemical scaffolds that have shown activity against two promising targets and efficacy against the parasite’s intracellular form. In order to identify additional inhibitors or novel chemical scaffolds with activity against both Trypanosoma cruzi enzymes, Dr. Cordeiro will be working with Novartis as part of their Facilitated Access to Screening Technologies (FAST) Lab program to screen several of Novartis’ proprietary compounds against these two targets to identify tool compounds for structure-based drug discovery.
Buruli ulcer is a debilitating and stigmatizing disease, and affects mainly children in West and Central Africa. It is a chronic condition that results in skin lesions and can lead to permanent disability and disfigurement. Dr. Tianyu Zhang, Principal Investigator and Director of the National Key Laboratory for Respiratory Diseases at Guangzhou Institutes of Biomedicine and Health (GIBH), is exploring the bactericidal activity of the antibiotic candidate TB47 against Buruli ulcer. He will send the TB47 candidate to Professor Fabrice Boyom at the University of Yaoundé I for further testing against clinical Mycobacterium ulcerans strains.
Leishmania is a parasite that disfigures or kills two million people every year in the developing world. There may be concerns about the efficacy and safety of current antileishmanial agents. In order to address this high-priority gap, Dr. Dawn Wetzel, Assistant Professor of Pediatrics and Pharmacology at UTSW, has identified a specific class of inhibitors with biological activity against Leishmania parasites. In order to support Dr. Wetzel’s antiparasitic screening efforts, Eisai Co., Ltd., has agreed to share inhibitors from this class of compounds.
GSK will be sharing its Tres Cantos Anti-Malarial Set (TCAMS) compound library with Drs. Audrey Odom John and Paul Hruz at WUSTL for screening for antimalarial drug discovery.
TCAMS, developed as a component of GSK’s research at its Tres Cantos facility, is a diverse set of over 13,500 compounds with activity against blood-stage Plasmodium falciparum, plus associated screening data. GSK shares the TCAMS compounds and data widely to drive antimalarial drug discovery.
Assets