Re:Search Institution Members

150 Results for Members

Members

The University of Papua New Guinea, School of Medicine and Health Sciences, is a medical and health services...

Developing World Health is a not for profit charitable company, working on providing a comprehensive...

Ahmadu Bello University, established in 1962, is a federal university in Zaria, Nigeria whose mission is to...

The Puerto Rico Science, Technology, and Research Institute invests, facilitates and builds capacity in order...

Usmanu Danfodiyo University, Sokoto (UDUS) was founded in 1975 as one of the initial twelve federal government...

The Institut Pasteur de Montevideo (IP Montevideo) is one of the most recent affiliates of the Institut...

160 Results for Collaborations

Collaborations

This fellowship of Indra Wibowo from the Institut Teknologi Bandung, Indonesia, with Wai-Hong Tham from the Walter and Eliza Hall Institute of Medical Research (WEHI), Australia, aimed to identify functional blocking antibodies that inhibit red blood cell binding and ligand-receptor interactions present in individuals in a region of high Malaria transmission in Indonesia. PfRh5 is one of the leading vaccine candidates against blood stage P. falciparum and PfRh4 governs the major invasion pathway independent of glycophorin-mediated entry.

Institute Pasteur Madagascar (IPM) is working with cohorts of EPTB (Extrapulmonary tuberculosis) patients in collaboration with local clinicians to better diagnose EPTB and accelerate diagnosis. IPM is gathering clinical, bacteriological as well immunological data and samples from these patients (clinical extrapulamonary Mtb (mycobacterium tuberculosis) strains, blood samples and other fluids), aiming to increase the Institute immunological investigation capacities in order to propose new options with new tools to diagnose EPTB with an integrated approach (host, pathogen, immune response). At IPM, the human host capacities need to be upgraded to meet with the international standards and increase the capacity to understand the host-pathogen interaction and build tools to fight against EPTB from this interaction. In this project, Paulo Ranaivomanana from IPM and Anna Coussens from WEHI work together to strengthen IPM capacities in assessing the immunological correlates that may be associated with extrapulmonary dissemination of Mtb. Understanding the determinants of Mtb dissemination can be useful to build diagnostic tools for EPTB.

It is estimated that one quarter of the world’s population is infected with tuberculosis (TB). To deter the growing threat of multidrug-resistant tuberculosis, new treatments are needed to successfully reduce the global burden of this disease. Dr. Cynthia Dowd from The George Washington University (GW) has developed lead compounds with anti-tubercular activity, wich could be promising candidates for TB drug development. In order to assist Dr. Dowd in target identification, MSD will be screening these compounds to determine their activity against a specific Mycobacterium tuberculosis target.

Professor Fabrice Boyom, head of the Antimicrobial & Biocontrol Agents Unit (AmBcAU) at the University of Yaounde I, is working toward the discovery and development of novel drugs against HAT, Leishmaniasis, and Malaria by targeting the parasites’ critical metabolic pathways. To support Professor Boyom’s drug discovery efforts, Eisai will share dihydrofolate reductase (DHFR) inhibitors and potassium channel blockers.

Johnson & Johnson has provided Drs. Audrey Odom John and Paul Hruz at Washington University in St. Louis (WUSTL) with its Jump-stARter library to screen against Plasmodium falciparum, the most deadly species of malaria parasite. Drs. Odom John and Hruz have developed a novel platform to selectively screen compounds’ ability to inhibit parasite glucose transport.

Dr. Stephen Ghogomu at the University of Buea has identified two proteins as potential biomarkers for adult-stage onchocerciasis. To support his diagnostic development, Dr. Jose Gomez-Marquez and Dr. Kimberly Hamad Schifferli at the Massachusetts Institute of Technology (MIT) have shared Ampli Blocks, a platform for diagnostic development. Dr. Ghogomu will use these blocks as a platform to develop an onchocerciasis diagnostic device.

The Ampli Block kit includes a set of 40 different building blocks that enable lab workers around the world to assemble them in different ways to produce diagnostic devices. By supplementing the engineering of diagnostic development, Ampli Blocks allow researchers to focus on the biochemistry of detection and promote independent development of site-specific diagnostic devices.

172 Results for Assets

Assets

The present invention relates to DNA sequences encoding merozoite antigen proteins of simian or simian-like species of Plasmodium suitable for use as vaccines against malarial infections in humans and animals. The invention also relates to recombinant DNA molecules that include such sequences and to cells transformed therewith.
The technology describes an exceptionally broad universe of novel naphthylisoquinoline alkaloid compounds, and methods of total synthesis thereof. These compounds have been shown to have potent in vitro activity against malaria parasites, including parasites that are highly resistant to available antimalarial drugs. These compounds have also been shown to have potent in vivo activity against malaria parasites in animal models. Pharmaceutical compositions comprising these compounds, as well as methods of using the compounds to treat or prevent a malarial infection of a host, are claimed. NIH Internal Reference no E-200-1994/0-US-01, US Patent Application no 08/279,291, US Patent no 5,552,550; E-200-1994/0-US-02, US Patent Application no 08/674,362, US Patent no 5,763,613; E-200-1994/2-US-01, US Patent Application no 09/001,801, US Patent no 6,140,339; E-200-1994/2-US-08, US Patent Application no 09/527,002, US Patent no 6,331,630; E-200-1994/2-AU-04, AU Patent Application no 24496/99; E-200-1994/2-BR-05, BR Patent Application no 9814575-4; E-200-1994/2-CA-06, CA Patent Application no 2313487; E-200-1994/2-EP-07, EP Patent Application no 98966748.0, EP Patent no 1045837; E-200-1994/2-IN-03, IN Patent Application no 2000/00143/CHE; E-200-1994/1-AU-02, AU Patent Application no 31969/95, AU Patent no 709428; E-200-1994/1-CA-03, CA Patent Application no 2195647; E-200-1994/1-JP-05, JP Patent Application no 505844/1996; E-200-1994/1-EP-06, EP Patent Application no 03005979.4; follwoing EP patents share same EP Patent Application no 95928091.8 and same EP Patent no 0772595: E-200-1994/1-EP-04, E-200-1994/1-AT-07, E-200-1994/1-DE-08, E-200-1994/1-BE-09, E-200-1994/1-DK-10, E-200-1994/1-ES-11, E-200-1994/1-GR-12, E-200-1994/1-IT-13, E-200-1994/1-LU-14, E-200-1994/1-MC-15, E-200-1994/1-NL-16, E-200-1994/1-PT-17, E-200-1994/1-SE-18, E-200-1994/1-FR-19. The technology describes an exceptionally broad universe of novel naphthylisoquinoline alkaloid compounds, and methods of total synthesis thereof. These compounds have been shown to have potent in vitro activity against malaria parasites, including parasites that are highly resistant to available antimalarial drugs. These compounds have also been shown to have potent in vivo activity against malaria parasites in animal models. Pharmaceutical compositions comprising these compounds, as well as methods of using the compounds to treat or prevent a malarial infection of a host, are claimed.
The subject technology are novel naphthylisoquinoline alkaloid compounds, and methods of total synthesis thereof. Representative examples of these compounds have been shown to have potent in vitro activity against malaria parasites, including parasites that are highly resistant to available antimalarial drugs. Representative examples have also been shown to have potent in vivo activity against malaria parasites in animal models. Pharmaceutical compositions comprising these compounds, as well as methods of using the compounds to treat or prevent a malarial infection of a host, are claimed. The relative structural simplicity of this class of compounds, and the ready synthetic access thereto, provide unprecedented opportunities for structure-activity relationship (SAR), lead-optimization and antimalarial drug development.
Malaria is endemic in many parts of the world, particularly in tropical regions such as Asia, Central America and South America. Recent estimates of the number of cases of malaria worldwide are between five hundred million and one billion. There are approximately two to three hundred million new cases of malaria each year and malaria causes a minimum of one million deaths each year. This invention relates to the identification and characterization of the binding specificity of BAEBL, a novel Plasmodium falciparum erythrocyte binding ligand that interacts with human erythrocytes in a sialic acid dependent manner. This novel Plasmodium falciparum erythrocyte binding ligand is unique and quite distinct from previously described Plasmodium falciparum erythrocyte binding proteins EBA-175. BAEBL may be used as a malaria vaccine to block human red cell recognition and invasion.
The class of compounds known as korupensamines exhibit in vitro and in vivo antimalarial activity and offer a potent new means for treating and controlling this devastating disease. As many as 2-3 million people worldwide die from malaria each year, and many more suffer from long-term chronic infection. The deadliest malarial parasites have become resistant to previously effective antimalarial drugs such as chloroquine and other clinically useful agents; therefore, effective new antimalarial drugs are urgently needed. These korupensamine compounds, which are isolated from a new species of the plant genus Ancistrocladus which is found in tropical Africa and southern and southeast Asia, effectively inhibit the growth, reproduction, and pathologic effects of a broad spectrum of Plasmodia parasites when given alone or in conjunction with previously available antimalarial agents. Licensees of this invention will be required to comport with all applicable federal and country-of-collection policies relating to biodiversity.
The invention provides a synthetic gene encoding an allelic fonn of non-glycosylat~d Plasmodium falciparum Apical Membrane Antigen 1 optimized for codon usage in Pichia pastoris (e.g., AMAI FVa and AMAI 3D7); the subsequent transfonnation of Pichia pastoris with this gene, the separate optimization for pH, temperature, growth rate, and media composition of reproducible, scalable, clinical grade fennentation conditions for the expressionof the products of the gene; a method of purification for de-lipidation to clinical grade purity of the products of the gene; and proof of efficacy of the purified protein products in in vitro growth inhibition assays and in vivo non-human primate challenge models. Expression, Purification And Efficacy testing of Synthetic Plasmodium Falciparum Apical Membrane Antigen 1 Expressed in Pichia Pastoris Two recombinant forms of the malaria asexual blood stage antigen Apical Membrane Antigen 1 AMA1 were produced in Pichia pastoris using totally defined, synthetic medias and a fermentation methodology that has been reproducibly scaled over a 10-fold range to 60L. High levels of secreted recombinant protein were obtained 300mg/L secreted protein in the supernatant, and >50mg/L final purified bulk protein , and a purification strategy developed to remove Host cell-derived lipids. Highly purified forms of both types of AMA1 produced appear to produce antibodies in vivo in rabbits that block homologous parasites from invading red blood cells in vitro. The combination of the two allelic forms made appears potent at inducing antibodies capable of blocking the invasion of many heterologous parasite strains in vitro, suggesting that the combination of these two alleles of AMA1 will provide sufficient coverage from the diverse field populations of parasites. One of the two AMA1's, based on the FVO allelic variant of AMA1, was emulsified with complete and incomplete Freund's adjuvant. Vaccination of highly susceptible Aotus vociferansmonkeys with this formulation conferred significant protection from a subsequent lethal challenge with the virulent FVO Plasmodium falciparumparasite. Five of eight animals whose primary immune response was directed against AMA1 were completely protected. These two recombinant forms of AMA1 may be an effective malaria vaccine. The production and purification methodologies may be suitable to other therapeutic proteins where large-scale, inexpensive production methodologies are required.